US009182964B2

a2z United States Patent (10) Patent No.: US 9,182,964 B2
Smith et al. 45) Date of Patent: Nov. 10, 2015
(54) SYSTEM AND METHOD FOR DEPLOYING 6,314,458 Bl 11/2001 Steele
SOFTWARE INTO A COMPUTING 6,344,862 Bl 2/2002 Williams
6,405,367 Bl 6/2002 Bryant
ENVIRONMENT 6,594,786 Bl 7/2003 Connelly
6,842,833 Bl 1/2005  Phillips
(75) Inventors: Rick Smith, Broomfield, CO (US); 6,968,535 B2 11/2005 Stelting
Robert Lovejoy Raymond, Ft Collins, 7,010,593 B2  3/2006 Raymond
CO (US); Craig W. Bryant, Ft Collins, ;’ig’;‘gi g% 1?%888 garsortl
. Chri ; ; 483, ryan
CO (US); Chris Schleicher, Ft Collins, 7.490,073 BL*  2/2009 Qureshi et al. .oococooonrn. 706/50
CO (US) 7,730,482 B2* 6/2010 Ilowskyetal. ... 717/177
7,870,550 B1* 1/2011 Qureshi et al. .. . 717/174
(73) Assignee: Hewlett-Packard Development 7,966,814 B2* 6/2011 Buisetal. ... 60/602
Company’ L.P., Houston, TX (US) 8,176,465 B2* 5/2012 Duttaetal. ... .. 717/104
8,281,307 B2* 10/2012 Arnoldetal. ........ccoeeeue. 718/1
(*) Notice: Subject to any disclaimer, the term of this %88%;8%255;3‘ ﬁi * ggggg Sfl}rllgzlr(;f; .Ztnal' """""" 711/100
patent is extended or adjusted under 35 2005/0223046 Al 10/2005 Smith I
U.S.C. 154(b) by 1452 days. 2006/0095858 Al 5/2006 Hao
2006/0114838 Al 6/2006 Mandavilli
(21) Appl. No.: 12/533,660 2006/0123414 Al* 6/2006 Forsetal ... 717177
(Continued)
(22) Filed: Jul. 31, 2009
FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data
3k
US 2011/0029963 A1 Feb. 3, 2011 EP 1577765 A2 % 9/2005
Primary Examiner — John Chavis
o4
(51) IGn0t¢-$glﬁ‘?/44 (2006.01) (74) Attorney, Agent, or Firm — International 1P Law
: Group, PLLC
GO6F 9/445 (2006.01) P
(52) US.CL (57) ABSTRACT
CPC it GO6F 8/61 (2013.01) . . .
(58) Field of Classification Search There is prov@eda system and method of deploying software
USPC ittt 717/171 into a computing environment by a processor. An exemplary
See application file for complete search history. method comprises providing, by a processor, a model of
software to be deployed and providing, by a processor, a
(56) References Cited model of the environment into which the software is to .be
deployed. The exemplary method also comprises customiz-
U.S. PATENT DOCUMENTS ing, by a processor, a plan for deploying the software into the
computing environment. The exemplary method additionally
6,065,051 A 5/2000  Steele comprises deploying, by a processor, the software into the
g:i;‘é:;gg gl 1?;388? ]\3Vr1}1]ﬁna§ns Icl?ggngiiarlllg environment according to the customized deploy-
6,211,877 Bl 4/2001 Steele :
6,253,325 Bl 6/2001 Steele
6,282,175 Bl 8/2001 Steele 18 Claims, 14 Drawing Sheets

1 302

Provide, By a Processor, a Model of
Software to be Deployed

l-1304

Provide, By a Processor, a Model of the Environment
into Which the Software is 1o be Deployed

1306

Customize, By a Processor, a plan for Daploying the
Software into the Computing Environment

|-1308

Deploy, By a Processor, the Software into the
Computing Environment According to the
Customized Deployment Plan

1310

()

1300



US 9,182,964 B2

Page 2
(56) References Cited 2009/0320019 Al* 12/2009 Ellingtonetal. ............. 717177
2010/0223287 Al* 9/2010 Lim .. 707/769
U.S. PATENT DOCUMENTS 2010/0281456 Al* 11/2010 Eizenmanetal. ... 717/104
2012/0167072 Al* 6/2012 Boykinetal. ........... 717172
2006/0224689 Al* 10/2006 Leipetal. ....cccccevennee 709/217 2012/0297247 Al* 11/2012 Aronovich etal. . 714/15
2008/0040455 Al* 2/2008 MacLeodetal. ........... 709/220 2012/0303592 Al* 11/2012 Aronovichetal. . 707/684
2008/0183715 Al 7/2008 Chen 2012/0304174 Al* 112012 Arnoldetal. .....c..coceee. 718/1
2009/0144515 Al*  6/2009 Benari ... 711/162
2009/0249284 Al* 10/2009 Antoszetal. ... 717/104 * cited by examiner



U.S. Patent Nov. 10, 2015 Sheet 1 of 14 US 9,182,964 B2

v 100
Server
102~
~104
Memory
Administration
Applications
Deployment
Pods
Dashboard
106
Processor
116~
108~ Computer Computer ~112
System System
110~ Computer Computer L~ 114
System System
A\

FIG. 1



U.S. Patent

Nov. 10, 2015

Sheet 2 of 14

Administration

Module

~202

l

Applications
Module

204

l

Deployment
Module

L~206

l

Pods
Module

~-208

l

Dashboard
Module

~210

200

FIG. 2

US 9,182,964 B2



U.S. Patent Nov. 10, 2015 Sheet 3 of 14 US 9,182,964 B2

® main.swf (application/x-shockwave-flash Object) - Mozilla Firefox o -] |
File Edit View History Bookmarks Tocls Help 27
(© ()o@ %) @) s ocatros cEA0Tamiiedman sf? 1 [ Googe <] :@-: o

Deployment Automation Dashboard  Deployment  Applications Pods [Administration] User: Rick [7] ]
R Administration 302—J

Sewer AUlOmatIOn | Lifccycle Administration
IOperations Orchestration
Build Artifact ame

T Wap
Presentation Options Ma§SDLC iDeveIopmentl > ( QA ] o> [ Staging] > lProductionl
Tier -
T T > (o) =

Lifecycle 7

Security /
/
304
306 /

Lifecycle Neme [ MinorSDLC |
Available Environments Environments in Lifecycle
Staging Development
QA
Production
= [m]
= Eow|
Save)
XEInGLL m—T©Nexl ©Frevious EIHighTght all_CIVaich case |
Done {2 |
300

FIG. 3



U.S. Patent Nov. 10, 2015 Sheet 4 of 14 US 9,182,964 B2

® main.swi (application/x-shockwave-flash Object) - Mozilla Firefox [ m[-1 3]
Lile Edit View History Bookmarks Tools Help i
! & © ! ! ! hitpi//localhost.64007arm/fleximain.swi? Y| B Googe A =)0
Deployment Automation Dashboard  Deployment  Applications  Pods JAdministration| User: Rick [ ][t ]
% Administration 402/
Server Automation " Tier Administration
[ ———— ]
IOperations Orchestration Tior Name: [Tomeat5.5 |
Build Artifact . Meltod: @) Server Automation (SA)
Presentation Opfions _ |f—=.aRplication Server O ClertAutomalor (CA)
Tier E -l_omca 5.5 Source: (@ SAPolicy | Tomcat 55 RHEL 4 E
et Bl Tomcat 6.0.18
Environment @ JBoss 4.2.3.GA O Mimage C
Lifecycle [ JBoss 4.2.3.GA with JGroups O Nore
Security [ BEA Weblogic Portal 10.2
= & Microsoft Windows Server 2003 Save
XEINa]T — O_Next ®Previous mHighight all_ CIMalch case
Transferring data from Jocalhost_ 1¥ld

400

FIG. 4



U.S. Patent

Nov. 10, 2015 Sheet 5 of 14

US 9,182,964 B2

Vs 502
® main.swf (application/x-shockwave-flash Object) - Mozilla Firefox |;||
File Edit View Higtory Bookmarks Tools Hel I 2%
(© )o@ (X) @) [Mipocanosteavamiiodmansit? ] I B Gosce Ao
Deployment Automation Dashboard  Deployment  |Applications|] Pods Administration User: Rick [ ] [t ]
&P Applications Applicalion: [My TestApp] ~] Release: [Initial Release |~ |
Application Template - My Test App [ esicotin dooe | eeaseDeis )
Add]@ New] @ Order | X Application Allribules
Q@ Tomeat 5.5 - Application Name: [y Test App l
© My Code Application Group:[Select Application Group | +]
@ My Config o o
~ o Application Description:
@Hsabs 1807~
L My oo Flow ) Application Permissions:
£l
[ Save Applicafion Defails ||
XFind:[ | ®@Next @Previous mHighlight all EMatgh case |
Jransferring data from localnost., 1P |

500

FIG. 5



U.S. Patent Nov. 10, 2015

Sheet 6 of 14

/602

® main.swf (application/x-shackwave-flash Object) - Mozilla Firefox

File Edit View History Bookmarks Tools Help

3
[ X|

El

! & S ! ! ! [Etwtp/ocaihost:8400/zmifioximain. swi?

37

Fvad | |i§: Google 2 .:

X
O

Deployment Automation Dashboard Deployment

v,

|Applications] Pods Administration User: Rick -] [rowex ]

QP Applicalions Applicalion: [My TestApp] ~]
Application Templale - My Test App

Release: [initial Release [+ ]

“Appication Detals | _ReEase Dol ]
[@ Add] @ New[ @ Order | X ]

Application Attributes

@ Tomcat 5.5 Edit Code Component My Code

@ My Code

Component Name: | MyCode

| ® My Config

@ HsQLDB 1.8.0.7
L @ My oo Flow

O Uil

Component Tier: [Tomeat55 |+ |

Component Source: @ Filesystem

O Sudversion

Source Directory: | /tmp

Destination Directory: | /mp

Embedded Script Name: |

Embedded Script Policy: QO Stop on Failure
® Run to Completion

[Save Applicafion Defails_]f

XFind:[I ] ©Next @Previcus mHighlight all EMatgh
Jransterring dala from localhosl.

case

|
Fd

600

FIG.

6

US 9,182,964 B2



U.S. Patent

Nov. 10, 2015 Sheet 7 of 14

US 9,182,964 B2
/o 702

® main swi (application/x-shockwave-flash Object) - Mozilla Firefox  J |;||

File Edit View History Boo<marks Tools Hell !

(© ®)o(@) X) @) o ocancstzittamledman s’ ]

Deployment Automation

R | |i§: Google [} . (c]
|Applications] Pods Administration User: Rick [ ] [teor ]

Release: [Initial Release |+ |

Dashboard  Deployment

&P Applications Application: [My Test App[ ~ ]
Application Template - My Test App

Application Detais || Re ease Cetails ]
Add] @ New| @ Order | X Applicafion Affribules
@ Tomcat 5.5 Edit Code Component My Code X
® My Code Component Name: | My Config |
\ e My Config Component Tier: | Tomcat 5.5 ﬂ
@ HSQLDB 1.8.07 Configuration Type: ® Script
L ® My oo Flow O Fie

Script Type: |UNIX (sh) | + |
Destination File: | db.cfg

Content: | host=@{dbhost}
port=@{dbport}

dbhost: |Required | + | | $ltier’HSQLDS 1.8.0.7”].targets.names}|El Discription »
dbport: |Required | + | | 9001

| El Discription »

[ Save Applicafion Details ]|
XFind:r @Next @Previous EHighlight all EMatgh case
ransfernng Qa3 rom 10CaoSL. .

|
’d

700

FIG. 7



U.S. Patent

Nov. 10, 2015 Sheet 8 of 14

US 9,182,964 B2

802

® main.swi (apphcation/x-shockwave-flash Object) - Mozila Firefox 7
File Edit View History Bookmarks Tools Hel

@ L 1htto:/Nocalhost:8400/am/fleximain.swi?
Deployment Automation Dashboard  |Deployment

&g Deployment  Application: [My TesTApp] ~] Release: [inilial Release_| ~] Version: [2]+] [+] [Refresh]
Target Environment:

o) 2>

-l IIE: Google |

Applications Pods Administration User: Rick [ ][5 ]

> ) o
Dealoyrent 1 Cetals W Fisory ]
Lo T Tl e Version oTRelease X
Application Templale - Ny Tes! Apy
Version Number: | 3 |
@ Tomcat 5.5
© My Code Description [ Created from Initial Release
® My Config
@ HsQLDB 184 :
Sy ror
Results
Close

XFind:LL ] ©Nexi @Previous mHighlight all DMalch case |
ransterring data irom localhost, vld
800

FIG. 8



U.S. Patent

Nov. 10, 2015

Sheet 9 of 14

902—~

US 9,182,964 B2

® main.swi (application/x-shockwave-flash Object) - Mozilla Firefox_ 7

IO,

Deployment Automation

Filc_Edit View History Bookmarks Tools Help

P

(&) () (@) [t ocahost8200amifleximain.swt?
Dashboard

Deployment
%Deploymenl Application: [My Test App] +]

Applications  Pods Administration User: Rick ["7 ][]

Release: [Initial Release [+ ] Version: [2 T+ ] | Refresh]

Target Environment:

Developmen

>

I QA I

>

| Staging I

Parameters - My Test App v 2

=>
X

Depoyment -
Show Pods for: c b QA Production
dramelers 1oV Ew D Devlopmant v QA Cluster Pod Austin color for DA
M oa My Config dbhost $itierPHSQLDB 1.8.0.7" targets.nares} | $ftier’HSQALDB 1.8.0.7" targets.namas}
[ staging My Conlig dbporl 9001 9001
@TOmCat 5. [ Production My oo Flow username dbadmin deadmin
a My COde My oo Flow passworc = e
My oo Flow hosl
e My Config My 0o Flow port 2010 2010
My oo Flow script
© HsaLDB 12
M QA Clusler 2ad
\ Q My 00 Flo [Joarad
[ Web App Pod
MAustin calo for DA
DSanFran colo for D: o
Dstore 11
[store 131 =

[ 1Pod [ Environment ] Application

|Close|

Jransierring data from localhost.

XEIndLl [ ©Next ®Previous mHighlioht al__IMalch case

|
Bl

900

FIG. 9



U.S. Patent

Nov. 10, 2015 Sheet 10 of 14 US 9,182,964 B2

® main.swf (application/x-shockwave-flash Object) - Mezilla Firefox / |;||ﬂ|2||
Eile Edit View History Bookmarks Tools Help z/ £
(O )G X) (@) [Lntp.localhost:8400iam/leximain swi? e Y] [BF Googe £_>|.o
Deployment Automation

Dashboard |Deployment]  Applications Pods Administration User: Rick 7 ] [err]

Release: [Initial Release | v Version: [2]~] [+] [Refresh]

W Deployment Application: [My TestApp
Target Environment:

o) > () » () =

Doployment | EEEE | B |
| Parameters “ previzw || Depioy |

Application Template - My Test App Application Destination {pods in QA) Pod - QA Cluster Pod
© Tomeat 5.5 ~ | |2 Denver Pods © Tomeat 5.5 M
© My Code M0 QA Cluster Pod @ slugbug.cnd.hp.com
| © My Config ) LD Web Agp Pod @ ninety.cnd.hp.com
. v
@ HsQLDB 18,07 - © HsQLDB 1807 -
(_© My oo Flow ) @ twobelow.cnd hp.com
\ v
Deploy Release X
Comment:| Deploy to QA

Schedule: ® Run now

O Run late[TT/T772008 | EAT055 AV ]
|Deploy| | Close|

XEInaL [ ©Next @Previous MHghlight all I Maich case
Jlransterning data jrom localhost.

1000
FIG. 10



U.S. Patent Nov. 10, 2015 Sheet 11 of 14 US 9,182,964 B2

1102\

® main.swi (application/x-shockwave-lash Object) - Mozilla Firefox
File Edit View History Bookmarks Tools Hel

Ell
(O ()o@ X) @ [z ocanosteannamiiedmansw? o B oo <] . o
Deployment Automation Dashboard  Deployment  Applications | Pods| Administration User: Rick [] [Tewd]

@ Pods  Application: [My Test App]~ ] Release: [nitial Release Version:

Choose environment to edit:

> > >
I Parameters |

Pods in QA Pod - QA Cluster Pod Pod Atfributes
+ [ x OIFilter by Release aAdd|ﬂAdd | X | Pod Name: [Cluster Pod
» O Denver Pods

B QA Cluster Pod © Tomeat 5.5 -
D Web App Pod @ slugbug.cnd.hp.com

Q ninety.cnd.hp.com
\.

Pod Group: [<No Group> [~]

@ HsaLDB 18.0.7 -
Q twobelow.cnd.hp.com
\

Savel|
XFind:LC ®Next ®Previous mHighlight all O Matich case
ranslerring data from Jocalhost.. ¥id

1100
FIG. 11



U.S. Patent Nov. 10, 2015 Sheet 12 of 14 US 9,182,964 B2

@ main.swf (application/x-shockwave-flash Object) - Mozilla Firefox

File Edit View History Bookmarks Tools Hel
‘ (p)o(G) (X) (@) [Lhttp/focanost:8400/am/Mex/main.sw? Y1 [ Googe o]
Deployment Automation Dashboard| Deployment  Applications Pods Administration User: Rick [ ][]

Deployment Error Trends
2600

32 e
1 —— 2400 o B
28 1 v 2200 : /

2000-H R

1 1800
20 1600
1 @ 1400+ Velelelelelel
2169, |§1200-E
1000
1291 ao0-H
8 600H
! a0
4 2004
ol . . . 01
Aug Sep Oct No Aug Sep Oct Nov

[ ] Average Days from Development to Production El Successful Releases  EPartially Successful Releases ] Failed Releases

Release By Application

sors |l r

Deployment ROI

uonealjddy
[ ]

1111208 1/13/08 11408 11115/08 11116/08 MN7108
® Development

E[=)

XFind:[0 ] ©Nexi @Frevious mHighlignt all QO Malch case
ransierring data irom localhost., vid

0

120
FIG. 12



U.S. Patent Nov. 10, 2015 Sheet 13 of 14 US 9,182,964 B2

1302
( Begin ;

Provide, By a Processor, a Model of L~1304
Software to be Deployed

Provide, By a Processor, a Model of the Environment |,~1306
into Which the Software is to be Deployed

Customize, By a Processor, a plan for Deploying the |,~1308
Software into the Computing Environment

Deploy, By a Processor, the Software into the
Computing Environment According to the
Customized Deployment Plan

1310

1312
End

1300
FIG. 13



U.S. Patent Nov. 10, 2015 Sheet 14 of 14 US 9,182,964 B2

Computer Implemented Instructions Adapted L-1402
to Provide a Model of Software to be Deployed

Computer Implemented Instructions Adapted 1404
to Provide a Model of the Environment into r~
Which the Software is to be Deployed

Computer Implemented Instructions Adapted
to Customize a plan for Deploying the 1406
Software into the Computing Environment

Computer Implemented Instructions Adapted to 1408
Deploy the Software into the Computing Environment r~
According to the Customized Deployment Plan

1400

FIG. 14



US 9,182,964 B2

1
SYSTEM AND METHOD FOR DEPLOYING
SOFTWARE INTO A COMPUTING
ENVIRONMENT

BACKGROUND

A production computing environment such as a data center
may include numerous individual computer systems and
servers, each with various hardware and software character-
istics. The computers and servers may be arranged in a wide
array of network configurations depending on the needs of the
particular production environment. Computers and servers in
production environments may run customized software
applications to accomplish specific purposes.

Deploying application software in a complex computing
environment can cause errors that result in reduced perfor-
mance and lost revenue. One cause of errors in application
deployment is the use of different processes for deployment
into a testing environment versus deployment into produc-
tion. Differences between test and production operating envi-
ronments can also result in errors during application deploy-
ment. For example, computers in a test environment may have
different operating system patch levels or middleware ver-
sions relative to production environment systems.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain exemplary embodiments are described in the fol-
lowing detailed description and in reference to the drawings,
in which:

FIG. 11is ablock diagram of a computer network according
to an exemplary embodiment of the present invention;

FIG. 2 is a block diagram showing a software deployment
application according to an exemplary embodiment of the
present invention;

FIG. 3 is a diagram showing an administration menu of a
software deployment application according to an exemplary
embodiment of the present invention;

FIG. 4 is a diagram showing a tier administration submenu
of'an administration menu of a software deployment applica-
tion according to an exemplary embodiment of the present
invention;

FIG. 5 is a diagram showing an applications menu of a
software deployment application according to an exemplary
embodiment of the present invention;

FIG. 6 is a diagram showing a code component editing
submenu of an applications menu of a software deployment
application according to an exemplary embodiment of the
present invention;

FIG. 7 is a diagram showing a configuration component
editing submenu of an applications menu of a software
deployment application according to an exemplary embodi-
ment of the present invention;

FIG. 8 is a diagram showing a deployment menu of a
software deployment application according to an exemplary
embodiment of the present invention;

FIG. 9 is a diagram showing a configuration parameter
editing submenu of a deployment menu of a software deploy-
ment application according to an exemplary embodiment of
the present invention;

FIG. 10 is a diagram showing a release deployment sub-
menu of a deployment menu of a software deployment appli-
cation according to an exemplary embodiment of the present
invention;

FIG. 11 is a diagram showing a pods menu of a software
deployment application according to an exemplary embodi-
ment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 is a diagram showing a dashboard menu of a
software deployment application according to an exemplary
embodiment of the present invention;

FIG. 13 is a process flow diagram showing a method of
deploying software into a computing environment by a pro-
cessor according to an exemplary embodiment of the present
invention; and

FIG. 14 Is a block diagram showing a tangible, machine-
readable medium that stores computer-readable code adapted
to perform software deployment according to an exemplary
embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

An exemplary embodiment of the present invention relates
to a system and method for upgrading computer systems.

As fully set forth below, a development team may create
components that need to be run on various tiers of a multi-tier
application. One example of a component type is a code
component. A code component may comprise executable
files, graphic assets, and/or markup assets. Code may be
harvested from local and/or remote file systems, source code
control systems, URLs or the like. Appropriate scripts or
artifacts must be run against the correct machines in a deploy-
ment topology.

When deployment is done in a production environment, it
may not be known whether system attributes such as under-
lying operating systems and middleware are the same relative
to a testing environment used to develop the scripts or arti-
facts. Exemplary embodiments of the present invention relate
to an automated software deployment system and method that
reduces errors in production by providing improved consis-
tency with respect to process and operating environments
across multiple phases of a software development lifecycle.

Those of ordinary skill in the art will appreciate that the
various functional blocks shown in the accompanying figures
may comprise hardware elements (including circuitry), soft-
ware elements (including computer code stored on a
machine-readable medium) or a combination of both hard-
ware and software elements. Moreover, the arrangements of
functional blocks shown in the figures are merely examples of
functional blocks that may be implemented according to an
exemplary embodiment of the present invention. Other
arrangements of functional blocks may readily be determined
by those of ordinary skill in the art based on individual system
design considerations.

FIG. 11is ablock diagram of a computer network according
to an exemplary embodiment of the present invention. The
computer network is generally referred to by the reference
number 100. The computer network 100 may comprise a
production computing environment. Those of ordinary skill
in the art will appreciate that a computer network according to
an exemplary embodiment of the present invention may be
more complex than the computer network 100 shown in FIG.
1. Moreover, such a computer network may comprise sub-
branches with additional devices, connections to an external
network such as the Internet, and so on. Further, the computer
system 100 could be, for example, a user or provider system,
a datacenter, and so forth.

The computer network 100 includes a server 102, which
comprises a memory 104. The memory 104 may include a
volatile portion and/or a non-volatile portion. Further, the
memory 104 may include one or more modules to implement
the functionality described in greater detail with respect to
FIG. 2. Moreover, the memory 104 represents a non-transi-
tory tangible, machine-readable medium that stores computer



US 9,182,964 B2

3

instructions for execution by a system processor 106. The
processor 106 may execute the instructions to perform a
method according to an exemplary embodiment of the present
invention.

In addition, the computer network 100 comprises a plural-
ity of computer systems 108, 110, 112 and 114, which may be
servers, desk top computer systems notebook computer sys-
tems or the like. The plurality of computer systems 108, 110,
112 and 114 are connected to the server 102 by a network
infrastructure 116. The network infrastructure 116 may com-
prise routers, switches hubs or the like.

The server 102 and the plurality of computer systems 108,
110, 112 and 114 may execute software applications to facili-
tate a wide range of purposes. For example, the server 102 and
the plurality of computer systems 108, 110, 112 and 114 may
operate to perform a particular function such as hosting a
business web site. The plurality of computer systems 108,
110, 112 and 114 may each perform a different function to
facilitate the hosting of the website. In particular, each of the
plurality of computer systems 108,110, 112 and 114 may run
one or more software components that serve different func-
tions (for example, hosting a database, creating web page
frameworks, populating certain fields on a page, performing a
credit card validation or the like). The computer systems that
run these components are intended to contain the appropriate
operating environment, including an operating system and
appropriate middleware (for example, application server soft-
ware, web server software, database management software).
The components may need to be configured with the correct
data for the particular operating environment in which they
reside. Examples of configuration data include host names
and port numbers of the related components.

Exemplary embodiments of an automated software devel-
opment tool according to the present invention allow network
managers and service personnel who support an application
lifecycle for the computer network 100 to track all of the
components, configuration information, devices, operating
environments and all of the inter-relationships between them.
Moreover, an exemplary embodiment of the present invention
provides a software application that eliminates the need to
manually track such information.

In general, software application development proceeds
through a development lifecycle. Phases of the development
lifecycle correspond to different target devices that are used to
run the application. Sets of target devices that comprise the
pool of available resources for a lifecycle phase may be
referred to as an environment.

The development lifecycle typically begins with a devel-
opment phase in which the software is created. The develop-
ment phase is followed by one or more testing phases, which
may focus on unit, functional, integration and performance
testing.

Applications are created in units that may be referred to as
releases. A release has a particular set of functionality that is
to be delivered together. Multiple releases of an application
may be in development at the same time. Different releases of
an application may have different lifecycles associated with
them. For example, a major new set of functionality may
require a multi-stage testing cycle, whereas a fix to an urgent
production issue may require a much shorter lifecycle to
insure the critical issue if fixed as quickly as possible. Typi-
cally, the first set of code produced by development is not of
sufficient quality to be deployed into production. Therefore,
many iterations of code must pass between development and
testing prior to a finalized version being ready for production.
These iterations are called versions of the release.

10

15

20

25

30

35

40

45

50

55

60

65

4

After a release of an application is deemed sufficiently
complete, it is moved to the production phase where it is put
into general use. According to an exemplary embodiment of
the present invention, a consistent automated process is used
during all phases of the development lifecycle to improve
quality and reduce development-to-production (end-to-end)
deployment time in a production computing environment.

In addition, complex software programs may include mul-
tiple tiers. Such software is typically referred to as n-tier
software applications. This reflects the fact that applications
are composed of many different components, each of which
must be run on a target device (physical or virtual) that con-
tains an appropriate operating system and collection of
middleware. For an application to function correctly, the
operating system and middleware must be of a specific ver-
sion and patch level. In addition, the components are desir-
ably deployed to the appropriate tiers, and the relationships
between the tiers are defined correctly.

To further refine the terminology of application develop-
ment, applications may have one or more releases, each of
which has one or more versions. A version is essentially a
snapshot of a release at a particular time. Versions and
releases include one or more tiers.

In one exemplary embodiment of the present invention, an
operating environment (for example, quality assurance, pre-
production, production or the like) contains many target
devices. The target devices may be physical or virtual
machines. Each of the target devices contains software that
allows the target device to perform the function of one or
more tiers. Examples of this software include web server
software, database software or the like. These machines may
then be grouped together into a pod of machines containing
the appropriate tiers necessary to run certain types of appli-
cations (3-tier for example). Software may be deployed, for
example, in the form of components, onto tiers within a pod.

Pods reside within a particular operating environment.
Therefore, an operating environment may be described as
comprising one or more pods. Each pod, in turn, may com-
prise one or more tiers. Each tier may comprise one or more
target devices. Both the software application and the operat-
ing environment decompositions contain a tier element. Thus,
the tier provides a coordination point thorough which opera-
tions can be designated for an application. By inference, the
appropriate infrastructure in the environment can be affected.
For example, a software developer may create a new compo-
nent that is required for an application, and add it to the
appropriate tier in the application.

According to an exemplary embodiment of the present
invention, the new component may be automatically
deployed to the appropriate infrastructure without the soft-
ware developer collecting information about that operating
environment. Similarly, a new availability or performance
monitor could be created for an application component (for
example, a web service). By inference, the application com-
ponent may be automatically configured to monitor all cor-
responding target devices in the operating environment.

According to an exemplary embodiment of the present
invention, deployments may desirably occur in a particular
order. For example, the server 102 may need to be placed into
a particular state prior to deploying new software to it.
Deployment ordering is desirably capable of being inter-
leaved across multiple tiers of an application.

Furthermore, a software deployment tool according to an
exemplary embodiment of the present invention may account
for the fact that problems may occur during deployment to an
environment. A failure to deploy to one tier of an application
(perhaps due to a hardware failure during deployment) may



US 9,182,964 B2

5

require that all other tiers be rolled back to their previous
state. Accordingly, an automated software deployment tool
according to an exemplary embodiment of the present inven-
tion may comprise a rollback mechanism that crosses mul-
tiple tiers of an application.

FIG. 2 is a block diagram showing an automated software
deployment application according to an exemplary embodi-
ment of the present invention. The automated software
deployment application is generally referred to by the refer-
ence number 200. The automated software deployment appli-
cation 200 may be used to deploy software such as applica-
tions, patches, bug fixes or the like into a computer network
such as the computer network 100 (FIG. 1).

The automated software deployment tool 200 comprises an
administration module 202. Functionality provided by the
administration module 202, which may be accessed by an
administration menu (described below), allows a user to
administer the overall operation of the automated software
deployment tool 200.

An applications module 204 allows the user to monitor the
status of new software applications as they are developed.
Functionality provided by the applications module 204 may
be accessed via an applications menu, as described below.

A deployment module 206 allows the user to initiate the
deployment of software into a computer network. Function-
ality provided by the deployment module 206 may be
accessed via a deployment menu, as described below.

A pods module 208 allows a user to define pods of hard-
ware into which software is to be deployed. Functionality
provided by the pods module 208 may be accessed via a pods
menu, as described below.

Finally, a dashboard module 210 allows a user to get over-
all status information about a managed network of computer
systems. Functionality provided by the dashboard module
210 may be accessed via a dashboard menu, as described
below.

The modules of the automated software deployment tool
200 allow a user to model an application prior to deployment.
Application editing may be permissioned to allow increased
security. Examples of attributes of an application that may be
modeled include the data that is to be deployed, any scripts
that need to be run as part of a deployment, and any custom
workflows that should be run during a deployment. In addi-
tion, configuration files that must be created or modified as
part of the deployment may be modeled. Application model-
ing according to an exemplary embodiment of the present
invention may include the correct ordering of the modeled
attributes within a tier and across multiple tiers. Additionally,
the definition of any parameters which must be set when the
deployment is executed may be modeled.

According to an exemplary embodiment of the present
invention, application modeling does not differ depending on
the environment into which the application is to be deployed.
Moreover, the application modeling process takes into
account features that are unique to the application or other
software that is to be deployed. Application modeling, how-
ever, may allow the environment into which the deployment is
occurring to be passed as a parameter into acomponent. Thus,
a script that includes logic to do something different depend-
ing on whether it is being deployed into a QA environment or
a production environment could be created and modeled.

In addition to modeling an application to be deployed, the
environment into which the application is to be deployed is
also modeled. According to an exemplary embodiment of the
present invention, modeling of an environment takes into
account workflows that may be performed before and after a
deployment, along with permissions that specify who may

10

15

20

25

30

40

45

50

55

60

65

6

deploy software into the environment. Pods may be added or
deleted from environments. Tiers may be added, modified or
deleted from pods. Devices such as computer systems or
servers may be added to or deleted from tiers within a pod.

After the modeling of the application and the modeling of
the environment is completed, the deployment of the appli-
cation into the environment may then be customized. Accord-
ing to an exemplary embodiment of the present invention,
aspects of a deployment that may be customized include the
modification of deployment parameter values. For example,
different administrator usernames and/or passwords needed
for certain deployment operations may be provided for dif-
ferent environments. In addition, a future start time for a
deployment may be set.

In addition, customization of the timing of different parts
of a deployment may be performed. For example, an appli-
cation deployment may be planned for 2,000 different sites.
Such a deployment may be done for a retail chain where each
individual store has its own network of systems. Simply copy-
ing the code to deploy to all those machines could take many
days. Instead, the deployment may be customized by copying
files into a temporary location on all the target devices on a
Monday night. The actual deployment may be delayed until
Friday night, at which time the files are moved from their
temporary location into their destination. In this manner, all
locations may be updated at the same time.

After customization of the deployment, the deployment is
actually executed in the environment.

FIG. 3 is a diagram showing an administration menu of a
software deployment tool according to an exemplary embodi-
ment of the present invention. The administration menu is
generally referred to by the reference number 300. The
administration menu 300 includes an administration menu
tab 302, which may be selected to display the administration
menu screen of a software deployment tool according to an
exemplary embodiment of the present invention.

As shown in FIG. 3, a software development lifecycle may
comprise multiple parallel environments, each containing tar-
get devices to which software can be deployed. The admin-
istration screen shown in FIG. 3 includes a first lifecycle 304
and a second lifecycle 306. Each of the lifecycles 304 and 306
contain a plurality of environments. Specifically, the first
lifecycle 304 contains a development environment, a QA
environment, a staging environment and a production envi-
ronment. The second lifecycle 306 contains a development
environment, a QA environment and a production environ-
ment. Each of the environments shown in FIG. 3 represents
one or more pods, which contain tiers. The pods may com-
prise one or more corresponding computer systems (such as
the computer systems 108, 110, 112 and 114 (FIG. 1)) in an
operating network.

For a given software deployment, the target devices in a
corresponding pod contain the operating system and middle-
ware necessary to allow them to perform as a specified tier.
Moreover, the tiers necessary to run a particular application
are grouped together to form the pods shown in FIG. 3. A pod
is the finest level of granularity for deployment of software.
Accordingly, an exemplary embodiment of the present inven-
tion allows software applications to be deployed on a per pod
basis. Exemplary embodiments of the present invention may
also provide deployment to multiple pods at the same time.
The tiers contained in the pod are desirably a match or super-
set of those in the application. The components defined in
each tier of the application may be automatically deployed to
the target devices contained by the tier definition in the pod
within the environment. An exemplary embodiment of the
present invention may prevent a user from attempting to



US 9,182,964 B2

7

deploy software to a pod that does not contain the correct tiers
for the software that is being deployed.

Furthermore, a definition of an operating environment for
each tier may be used to ensure that each target device in each
tier of the pod in each environment of the lifecycle is uniform.
The operating environment definition includes the operating
system and middleware required for the tier. Moreover, auto-
mated deployment according to an exemplary embodiment of
the present invention may ensure that the target device has the
correct operating system and middleware prior to deploying
the application.

The administration screen shown in FIG. 3 may be used to
add new environments to which software may be deployed.
Each environment may be created with associated permis-
sions to allow deployment of software only by authorized
personnel.

FIG. 4 is a diagram showing a tier administration submenu
of the administration menu of a software deployment appli-
cation according to an exemplary embodiment of the present
invention. The tier administration submenu is generally
referred to by the reference number 400. The tier administra-
tion submenu 400 may be selected when an administration
menu tab 402 is active. In an exemplary embodiment of the
present invention, the tier administration submenu 400 may
be used to associate information that ensures that appropriate
OS and middleware components are installed on each system
prior to deployment of a new software application.

FIG. 5 is a diagram showing an applications menu of a
software deployment application according to an exemplary
embodiment of the present invention. The applications menu
is generally referred to by the reference number 500. The
applications menu 500 includes an applications menu tab
502, which may be selected to display the applications menu
screen of a software deployment tool according to an exem-
plary embodiment of the present invention. The applications
menu 500 may be used to display a status of applications as
they are created. As described herein, each application may
comprise one or more tiers, and each tier may comprise zero
or more components. In addition, multiple releases may be
created for each application.

FIG. 6 is a diagram showing a code component editing
submenu of an applications menu of a software deployment
application according to an exemplary embodiment of the
present invention. The code component editing submenu is
generally referred to by the reference number 600. The code
component editing submenu 600 may be selected when an
applications menu tab 602 is active. As shown in FIG. 6, the
code component editing submenu 600 allows a user to edit
properties of a code component such as a software component
prior to deploying the code component according to an exem-
plary embodiment of the present invention.

FIG. 7 is a diagram showing a configuration component
editing submenu of an applications menu of a software
deployment application according to an exemplary embodi-
ment of the present invention. The configuration component
editing submenu is generally referred to by the reference
number 700. The configuration component editing submenu
700 may be selected when an applications menu tab 702 is
active.

In an exemplary embodiment of the present invention, a
configuration component is used to create a configuration file.
Configuration files may be used for a wide range of purposes,
including linking different tiers of an application together.
Other examples of functions that may be performed with
configuration files include configuring middleware, specify-
ing file locations, performing database configuration or the
like. The exemplary configuration component editing sub-

10

15

20

25

30

35

40

45

50

55

60

65

8

menu 700 shown in FIG. 7 shows a configuration component
that creates a configuration file on an application server tier
describing a host name and port number to access a database
tier.

An exemplary embodiment of the present invention allows
data to be filled in dynamically at deployment time. One
exemplary embodiment of the present invention provides for
automatic population of configuration information that con-
nects multiple tiers of the application. In addition, abstraction
between the definition of the application and assignment of
target devices to the operating environment may be accom-
plished.

In FIG. 7, information regarding a dbhost parameter to a
file is displayed. Moreover, parameter information such as the
host name for the database tier may be provided. This infor-
mation may only be determined once a particular pod is
selected for a software deployment.

FIG. 8 is a diagram showing a deployment menu of a
software deployment application according to an exemplary
embodiment of the present invention. The deployment menu
is generally referred to by the reference number 800. The
deployment menu 800 includes a deployment menu tab 802,
which may be selected to display the deployment menu
screen of a software deployment tool according to an exem-
plary embodiment of the present invention. As shown in FIG.
8, the deployment menu 800 may be used to display the status
of' new versions of applications that are being created. A new
version may be created by harvesting the current state of
components from, for example, a source code control system.
Status information representing a state of this data gathering
may be displayed.

FIG. 9 is a diagram showing a configuration parameter
editing submenu of a deployment menu of a software deploy-
ment application according to an exemplary embodiment of
the present invention. The configuration parameter editing
submenu is generally referred to by the reference number
900. The configuration component editing submenu 900 may
be selected when a deployment menu tab 902 is active.

The configuration parameter editing submenu 900 allows a
user to modify configuration parameters for a particular
deployment. FIG. 9 shows an example of current parameters
that may be used for a deployment to servers and/or computer
systems in a quality assurance (QA) environment and/or a
production environment. Parameters may vary across differ-
ent environments. For example, a deployment to the quality
assurance environment may be done to different port numbers
for a database component.

FIG. 10 is a diagram showing a release deployment sub-
menu of a deployment menu of a software deployment appli-
cation according to an exemplary embodiment of the present
invention. The release deployment submenu is generally
referred to by the reference number 1000. The release deploy-
ment submenu 1000 may be selected when a deployment
menu tab 1002 is active. The release deployment submenu
1000 allows a user to select a pod for a software deployment
and to initiate the deployment. The deployment may be per-
formed in real time or may be scheduled for a future time.

FIG. 11 is a diagram showing a pods menu of a software
deployment application according to an exemplary embodi-
ment of the present invention. The pods menu is generally
referred to by the reference number 1100. The pods menu
1100 includes a pods menu tab 1102, which may be selected
to display the pods menu 1100 of a software deployment tool
according to an exemplary embodiment of the present inven-
tion. As shown in FIG. 9, the pods menu 1100 may be used to
show the status of pods that are updated with software using
a software deployment tool according to an exemplary



US 9,182,964 B2

9

embodiment of the present invention. As set forth above, pods
contain tiers needed (or a superset thereof) for a particular
version of a release of an application. The tiers in a pod are
populated with target devices.

FIG. 12 is a diagram showing a dashboard menu of a
software deployment application according to an exemplary
embodiment of the present invention. The dashboard menu is
generally referred to by the reference number 1200. The
dashboard menu 1200 includes a dashboard menu tab 1202,
which may be selected to display the dashboard menu 1200 of
a software deployment tool according to an exemplary
embodiment of the present invention. As shown in FIG. 2, the
dashboard menu 1200 allows a user to get overall status
information about a managed network of computer systems.

FIG. 13 is a process flow diagram showing a method of
deploying software into a computing environment by a pro-
cessor according to an exemplary embodiment of the present
invention. The method is generally referred to by the refer-
ence number 1300. At block 1302, the method begins.

At block 1304, a model of software to be deployed is
provided by a processor. The software may comprise an appli-
cation, a patch, a bug fix or the like. A model of the environ-
ment into which the software is to be deployed is provided by
a processor, as shown at block 1306.

At block 1308, a plan for deploying the software into the
computing environment is customized by a processor. As set
forth above, the customization process matches elements of
the software to be deployed to characteristics of the comput-
ing environment or environments that is going to receive the
software. The customization process may include modifica-
tion of deployment parameter values, as set forth above.

Atblock 1310, the software is deployed into the computing
environment by a processor according to the customized
deployment plan. The deployment may be initiated manually
under control of a network support person. Alternatively, the
deployment may be scheduled to take place at a future time.
At block 1312, the method ends.

FIG. 14 Is a block diagram showing a tangible, machine-
readable medium that stores computer-readable code adapted
to perform software deployment according to an exemplary
embodiment of the present invention. The tangible, machine-
readable medium is generally referred to by the reference
number 1400. The tangible, machine-readable medium 1400
may correspond to any typical storage device that stores com-
puter-implemented instructions, such as programming code
or the like. Moreover, the tangible, machine-readable
medium 1400 may comprise a volatile and/or non-volatile
portion of the memory 104 (FIG. 1) of a computer the system
such as the server 102 (FIG. 1). When read and executed by a
processor such as the processor 106 (FIG. 1) of a typical
computer system, the instructions stored on the tangible,
machine-readable medium 1400 are adapted to cause the
processor to perform a method of deploying software in
accordance with an exemplary embodiment of the present
invention.

A first region 1402 of the tangible, machine-readable
medium 1400 stores computer-implemented instructions
adapted to provide a model of software to be deployed. Com-
puter-implemented instructions adapted to provide a model
of the environment into which the software is to be deployed
are stored on a second region 1404 of the tangible, machine-
readable medium 1400.

A third region 1406 of the tangible, machine-readable
medium 1400 stores computer-implemented instructions
adapted to customize a plan for deploying the software into
the computing environment. Computer-implemented instruc-
tions adapted to deploy the software into the computing envi-

10

20

25

30

35

40

45

50

55

60

65

10

ronment according to the customized deployment plan are
stored on a fourth region 1408 of the tangible, machine-
readable medium 1400.

According to an exemplary embodiment of the present
invention, software applications and modifications such as
patches, bug fixes or the like may be deployed on a per tier
basis using via the administration screen of a software
deployment application.

An exemplary embodiment of the present invention
addresses security concerns by allowing operations personnel
to make logical entities (pods) available to resource consum-
ers without exposing the actual target device name, IP
address, user logons or passwords. Software application
developers can create, organize and enhance their applica-
tions without prior knowledge of the operating environment
into which they will be deployed. This provides for a consis-
tent method of deployment across multiple operating envi-
ronments in the software development lifecycle. Moreover, a
method according to an exemplary embodiment of the present
invention allows application definitions to be created in one
set of products and reused across multiple automation prod-
ucts.

What is claimed is:

1. A method of deploying software into a computing envi-
ronment by a processor, the method comprising:

providing, by a processor, a model of software to be

deployed;

providing, by a processor, a model of the environment into

which the software is to be deployed;

customizing, by a processor, a plan for deploying the soft-

ware into the computing environment, wherein the plan
includes matching elements of the software to be
deployed to characteristics of the computing environ-
ment;

deploying, by a processor, the software into the computing

environment according to the customized deployment
plan; and

rolling back, by a processor, a deployment of the software

to its previous state if a problem in the deployment is
encountered.

2. The method recited in claim 1, wherein the computing
environment comprises a plurality of pods, each of the plu-
rality of pods comprising one or more computer systems.

3. The method recited in claim 1, wherein the software
comprises a plurality of tiers.

4. The methodrecited in claim 1, comprising automatically
determining, by a processor, whether computer systems
within the computing environment are correctly configured to
receive the software.

5. The method recited in claim 4, wherein determining
whether computer systems within the computing environ-
ment are correctly configured to receive the software com-
prises evaluating, by a processor, whether an operating sys-
tem and/or middleware on the computer systems is correct
relative the software that is to be deployed.

6. The method recited in claim 1, wherein the software to be
deployed comprises at least one tier.

7. The method recited in claim 6, wherein the at least one
tier comprises a plurality of components.

8. The method recited in claim 7, wherein the plurality of
components comprises a code component.

9. The method recited in claim 8, wherein the code com-
ponent comprises an executable file, a graphic asset, and/or a
markup asset.

10. The method recited in claim 1, wherein the software
comprises an application, a patch or a bug fix.



US 9,182,964 B2

11

11. A computer system that is adapted to deploy software
into a computing environment, the computer system compris-
ing:

a processor that is adapted to execute stored machine-

readable instructions; and

amemory device that stores machine-readable instructions

that are executable by the processor, the machine-read-
able instructions comprising instructions adapted to
cause the processor to provide a model of software to be
deployed, instructions adapted to cause the processor to
provide a model of the environment into which the soft-
ware is to be deployed, instructions adapted to cause the
processor to customize a plan for deploying the software
into the computing environment, wherein the plan
includes a customization process to match elements of
the software to be deployed to characteristics of the
computing environment, instructions adapted to cause
the processor to deploy the software into the computing
environment according to the customized deployment
plan, and instructions adapted to cause the processor to
roll back a deployment of the software to its previous
state if a problem in the deployment is encountered.

12. The computer system recited in claim 11, wherein the
computing environment comprises a plurality of pods, each
of the plurality of pods comprising one or more computer
systems.

13. The computer system recited in claim 11, wherein the
software comprises a plurality of tiers.

14. The computer system recited in claim 11, wherein the
machine-readable instructions comprise instructions adapted
to cause the processor to automatically determine whether
computer systems within the computing environment are cor-
rectly configured to receive the software.

15. The computer system recited in claim 14, wherein the
machine-readable instructions comprising instructions
adapted to cause the processor to automatically determine

15

25

35

12

whether computer systems within the computing environ-
ment are correctly configured to receive the software com-
prise instructions adapted to cause the processor to evaluate
whether an operating system and/or middleware on the com-
puter systems is correct relative the software that is to be
deployed.

16. The computer system recited in claim 11, wherein the
software to be deployed comprises at least one tier.

17. The computer system recited in claim 16, wherein the at
least one tier comprises a plurality of components.

18. A non-transitory, tangible, machine-readable medium
that stores machine-readable instructions executable by a
processor to deploy software into a computing environment,
the tangible-machine-readable medium comprising:

machine-readable instructions that, when executed by the

processor, cause the processor to provide a model of
software to be deployed;
machine-readable instructions that, when executed by the
processor, cause the processor to provide a model of the
environment into which the software is to be deployed;

machine-readable instructions that, when executed by the
processor, cause the processor to customize a plan for
deploying the software into the computing environment;

machine-readable instructions that, when executed by the
processor, cause the processor to match elements of the
software to be deployed to characteristics of the com-
puting environment;

machine-readable instructions that, when executed by the

processor, cause the processor to deploy the software
into the computing environment according to the cus-
tomized deployment plan; and

machine-readable instructions that, when executed by the

processor, cause the processor to roll back a deployment
of the software to its previous state if a problem in the
deployment is encountered.

#* #* #* #* #*



